a
Software Verification and Validation Plan

Table of Contents

21
Introduction

21.1
Revision History

21.2
Purpose

21.3
Scope

31.4
Definitions, Acronyms & Abbreviations

91.5
References

102
SCM/HCM Management at Plantation Productions, Inc.

113
SCM/HCM Activities

113.1
Configuration Identification

123.2
Initial Baseline

123.3
Changing Configurations

143.4
Configuration Status

143.5
Configuration Audits and Reviews

143.6
Interface Control

143.7
Subcontractor/Vender Control

153.8
SCM/HCM Schedules and Milestones

153.9
SCM/HCM Resources

153.10
SCM/HCM Plan Maintenance

Note: All trademarks and registered trademarks contained herein are the property of their respective owners. Plantation Productions, Inc., does not claim ownership of any trademarks within this document other than those specifically owned by Plantation Productions, Inc.

Note: TRIGA™ is a registered trademark of General Atomics, Inc.

1 Introduction
The Plantation Productions, Inc., DAQ System is a set of hardware circuit boards and firmware that provide data acquisition and control functionality. Although originally intended for TRIGA™ research reactor data acquisition and control the DAQ System is sufficiently generic that it can be use for arbitrary systems requiring analog and digital I/O.
1.1 Revision History

Revision 1.0: Randall Hyde Sept 26, 2017

1.2 Purpose

This document describes the Software Verification and Validation Plan (SVVP) for the Plantation Productions' Open Source/Open Hardware digital data acquisition system. The purpose of this verification and validation plan is to describe how the DAQ System shall be verified (e.g., requirements are necessary and sufficient) and validated (e.g., does the code meet the requirements?).
1.3 Open Source

The DAQ System documentation, software, and hardware is covered under the Creative Commons (CC BY 4.0) found here:

https://creativecommons.org/licenses/by/4.0/
For the purposes of attribution, all work must be attributed to "Randall Hyde, Plantation Productions, Inc., Copyright 2017"

This document has been developed per the guidance provided in IEEE Std 730-1998, IEEE Standard for Software Quality Assurance Plans.
1.4 Scope
This document covers the verification and validation plan of the Open Source/Open Hardware products in the DAQ System product line created by Plantation Productions, Inc. It covers the verification and validation plan for the basic hardware and software modules created by Plantation Productions, Inc., as stand-alone objects. Creation of implementation-dependent (site-dependent) combinations of these products is beyond the scope of this document. This document has the following organization:
· Section 2: Contains references and definitions

· Section 3: Describes the verification approach

· Section 4: Describes the validation approach

· Section 5: Describes the tests to execute

· Section 6: Discusses the Reverse Traceability Matrix

2 Reference
2.1 References
NOTE:
Listing of a document in this references section means that the reference was used in the development of this document and does not mean that this document or testing comply with that reference.
2.1.1 Government Regulations, Standards and Publications

	Issued By
	Document Identity
	Title

	NRC
	RG 1.170
	Software Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

2.1.2 Industry Standards

	Issued By
	Document Identity
	Title

	IEEE
	IEEE Std 610.12-1990
	IEEE Glossary of Software Engineering Terminology

	IEEE
	IEEE Std 730-1998
	IEEE Standard for Software Quality Assurance Plans

	IEEE
	IEEE Std 828-1998
	IEEE Standard for Software Configuration Management Plans

	IEEE
	IEEE Std 829-1998
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 829-2008
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 1008-1987
	IEEE Standard for Software Unit Testing

	IEEE
	IEEE Std 1012-1998/2004
	IEEE Standard for Software Verification and Validation

2.2 Definitions, Acronyms & Abbreviations
Note: many of these definitions were taken directly from IEEE Std 829-2008.

	Acceptance Testing
	 (A) Testing conducted to establish whether a system satisfies its acceptance
criteria and to enable the customer to determine whether to accept the system. (B) Formal testing conducted

to enable a user, customer, or other authorized entity to determine whether to accept a system or

component. This is analogous to qualification testing in IEEE/EIA Std 12207.0-1996 [B21]. Another

commonly used synonym is validation testing.

	Activity
	 An element of work performed during the implementation of a process. An activity normally
has an expected duration, cost, and resource requirements. Activities are often subdivided into tasks.

	Address
	 To deal with, to take into consideration; (specifically) to decide whether and when a defined documentation topic is to be included, either directly or by reference to another document. Make a decision as to whether an item is to be recorded prior to the test execution (in a tool or not in a tool), recorded during the test execution, recorded post-test execution, not recorded (addressed by the process), or excluded.

	Anomaly
	 Anything observed in the documentation or operation of software or system that deviates
from expectations based on previously verified software products, reference documents, or other sources of indicative behavior. (adopted from IEEE Std 610.12-1990 [B3])

	Branch Metric
	The result of dividing the total number of modules in which every branch has been executed at least once by the total number of modules.

	CDR
	Critical Design Review

	Checkout
	 Testing conducted in the operational or support environment to ensure that a software product performs as required after installation. (adopted from IEEE Std 610.12-1990 [B3])

	Component
	One of the parts that make up a system. A component may be hardware or software and may be subdivided into other components. Note: The terms “module,” “component,” and “unit” are often used interchangeably or defined to be sub elements of one another in different ways depending upon the context. The relationship of these terms is not yet standardized.

For this plan, a component is defined as the combination of units and modules that are included in the source files required for a major software task.
 (adopted from IEEE Std 610.12-1990 [B3])

	Component Integration Testing
	 Testing of groups of related components.

	Component Testing
	 Testing of individual hardware or software components. (adopted from IEEE Std 610.12-1990 [B3])

	Control Point
	A project agreed on point in time or times when specified agreements or controls are applied to the software configuration items being developed, e.g., an approved baseline or release of a specified document/code.

	Criticality
	 The degree of impact that a requirement, module, error, fault, failure, or other characteristic has on the development or operation of a system. (adopted from IEEE Std 610.12-1990 [B3])

	Critical Software
	Software whose failure would impact safety or cause large financial or social losses.

	Decision Point Metric
	The result of dividing the total number of modules in which every decision point has had 1) all valid conditions, and 2) at least one invalid condition, correctly processed, divided by the total number of modules.

	Development Testing
	 Testing conducted to establish whether a new software product or softwarebased system (or components of it) satisfies its criteria. The criteria will vary based on the level of test being performed.

	Document
	 (A) A medium, and the information recorded on it, that generally has permanence and can be read by a person or a machine. Examples in software engineering include project plans, specifications, test plans, and user manuals. (B) To create a document as in (A). (adopted from IEEE Std 610.12-1990 [B3])

	Documentation
	 (A) A collection of documents on a given subject. (B) Any written or pictorial information describing, defining, specifying, reporting, or certifying activities, requirements, procedures, or results. (C) The process of generating or revising a document. (D) The management of documents, including identification, acquisition, processing, storage, and dissemination. (adopted from IEEE Std 610.12-1990 [B3])

	Domain Metric
	The result of dividing the total number of modules in which one valid sample and one invalid sample of every class of input data items (external messages, operator inputs, and local data) have been correctly processed, by the total number of modules.

	Error Message Metric
	The result of dividing the total number of error messages that have been formally demonstrated, by the total number of error messages.

	Feature
	 A distinguishing characteristic of a system item (includes both functional and nonfunctional attributes such as performance and reusability).

	Functional Testing
	(1) Testing that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in response to selected inputs and execution conditions. (2) Testing conducted to evaluate the compliance of a system or component with specified functional requirements. [IEEE Std 610.12-1990]

	HCM
	Hardware Configuration Management

	Integration Testing
	 Testing in which software components, hardware components, or both are combined and tested to evaluate the interaction among them. This term is commonly used for both the integration of components and the integration of entire systems. (adopted from IEEE Std 610.12-1990 [B3])

	Integrity Level
	 (A) The degree to which software complies or must comply with a set of stakeholder-selected software and/or software-based system characteristics (e.g., software complexity, risk assessment, safety level, security level, desired performance, reliability, or cost), defined to reflect the importance of the software to its stakeholders. (B) A symbolic value representing this degree of compliance within an integrity level scheme.

	Integrity Level Scheme
	 A set of system characteristics (such as complexity, risk, safety level, security level, desired performance, reliability, and/or cost) selected as important to stakeholders, and arranged into discrete levels of performance or compliance (integrity levels), to help define the level of quality control to be applied in developing and/or delivering the software.

	Interface Requirements Specification (IRS)
	 Documentation that specifies requirements for interfaces between or among systems or components. These requirements include constraints on formats and timing. This may be included as a part of the Software Requirements Specification. (adopted from IEEE Std 610.12-1990 [B3] and IEEE Std 1012TM -2004 [B10])

	Life Cycle Processes
	 A set of interrelated activities that result in the development or assessment of software products. Each activity consists of tasks. The life cycle processes may overlap one another.

	Minimum Tasks
	 Those tasks required for the integrity level assigned to the software to be tested.

	Normal Operating Condition
	Condition of the console when the console is operational and no unexplained statuses are present

	Operational
	 (A) Pertaining to a system or component that is ready for use in its intended environment. (B) Pertaining to a system or component that is installed in its intended environment. (C) Pertaining to the environment in which a system or component is intended to be used. (adopted from IEEE Std 610.12-1990 [B3])

	Operational Testing
	 Testing conducted to evaluate a system or component in its operational environment. (adopted from IEEE Std 610.12-1990 [B3])

	Optional Tasks
	 Those tasks that may be added to the minimum testing tasks to address specific requirements. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	PDR
	Preliminary Design Review

	Process
	 A set of interrelated activities, which transform inputs into outputs.

	Qualification Testing
	 Conducted to determine whether a system or component is suitable for operational use. See also: acceptance testing ; development testing ; operational testing.

	Quality
	 (A) The degree to which a system, component, or process meets specified requirements. (B) The degree to which a system, component, or process meets customer or user needs or expectations. (adopted from IEEE Std 610.12-1990 [B3])

	Quality Assurance
	A planned and systematic pattern of all actions necessary to provide adequate confidence that the item or product conforms to established technical requirements.

	Release
	The formal notification and distribution of an approved version.

	Regression Testing
	Selective retesting of a system or component to verify that modifications have not caused unintended effects and that the system or component still complies with its specified requirements. [IEEE Std 610.12-1990]

	Request for Proposal (RFP)
	 A document used by the acquirer as the means to announce its intention to potential bidders to acquire a specified system, software product, or software service. (adopted from IEEE Std 1074-2006 [B17])

	Required Inputs
	 The set of items necessary to perform the minimum testing tasks mandated within any life cycle activity. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Required Outputs
	 The set of items produced as a result of performing the minimum testing tasks mandated within any life cycle activity.

	Requirements Demonstration Metric
	The result of dividing the total number of separately-identified requirements in the software requirements specification (SRS) that have been successfully demonstrated by the total number of separately-identified requirements in the SRS.

	Reusable Product
	 A product developed for one use but having other uses, or one developed specifically to be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to, commercial off-the-shelf (COTS) products, acquirer-furnished products, products in reuse libraries, and preexisting developer products. Each use may include all or part of the product and may involve its modification. This term can be applied to any software or system product (for example, requirements or architectures), not just to software or system itself. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Risk
	The combination of the probability of occurrence and the consequences of a given future undesirable event. Risk can be associated with software and/or systems. (B) The combination of the probability of an abnormal event or failure and the consequence(s) of that event or failure to a system’s components, operators, users, or environment. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Scenario
	 (A) A description of a series of events that may occur concurrently or sequentially. (B) An account or synopsis of a projected course of events or actions. (adopted from IEEE Std 1362TM-1998 [B20]) (C) Commonly used for groups of test cases; synonyms are script, set, or suite.

	SCM
	Software Configuration Management

	SCMP
	Software Configuration Management Plan

	SCMPR
	Software Configuration Management Plan Review

	SDD
	Software Design Description

	Software
	 Computer programs, procedures, and possibly associated documentation and data pertaining to the operation of a computer system. (adopted from IEEE Std 610.12-1990 [B3])

	Software-Based Systems
	 Computer systems that are controlled by software.

	Software Design Description (SDD)
	 A representation of software created to facilitate analysis, planning, implementation, and decision making. The software design description is used as a medium for communicating software design information, and it may be thought of as a blueprint or model of the system. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Software Requirements Specification (SRS)
	 Documentation of the essential requirements (functions, performance, design constraints, and attributes) of the software and its external interfaces. (adopted from IEEE Std 610.12-1990 [B3])

	SQA
	Software Quality Assurance

	SQAP
	Software Quality Assurance Plan

	SRR
	Software Requirements Review

	SRS
	Software Requirements Specification

	STC
	Software Test Case

	STP
	Software Test Procedure

	SVVP
	Software Verification and Validation Plan

	SVVPR
	Software Verification and Validation Plan Review

	SVVR
	Software Verification and Validation Report

	Systems Integration Testing
	 Testing conducted on multiple complete, integrated systems to evaluate their ability to communicate successfully with each other and to meet the overall integrated systems’ specified requirements.

	SyRS
	System Requirements Specification

	System Testing
	 Testing conducted on a complete, integrated system to evaluate the system’s compliance with its specified requirements. (adopted from IEEE Std 610.12-1990 [B3])

	Task
	 (A) The smallest unit of work subject to management accountability. A task is a well-defined work assignment for one or more project members. Related tasks are usually grouped to form activities. (adopted from IEEE Std 1074-2006 [B17]). (B) In Micro-C/OS a task is synonymous with a thread of execution.

	Test
	 (A) A set of one or more test cases. (B) A set of one or more test procedures. (C) A set of one or more test cases and procedures. (adopted from IEEE Std 610.12-1990 [B3] (D) The activity of executing (A), (B), and/or (C).

	Test Approach
	 A particular method that will be employed to pick the particular test case values. This may vary in specificity from very general (e.g., black box or white box) to very specific (e.g., minimum and maximum boundary values).

	Test Case
	 (A) A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. (B) Documentation specifying inputs, predicted results, and a set of execution conditions for a test item. (adopted from IEEE Std 610.12-1990 [B2])

	Test Class
	 A designated grouping of test cases.

	Test Design
	Documentation specifying the details of the test approach for a software feature or combination of software features and identifying the associated tests (commonly including the organization of the tests into groups). (adopted from IEEE Std 610.12-1990 [B2])

	Test Effort
	 The activity of performing one or more testing tasks.

	Test Level
	 A separate test effort that has its own documentation and resources (e.g., component, component integration, system, and acceptance).

	Testing
	(1) The process of operating a system or component under specified conditions, observing or recording the results, and making an evaluation of some aspect of the system or component. (2) The process of analyzing a software item to detect the differences between existing and required conditions (that is, bugs) and to evaluate the features of the software items. [IEEE Std 610.12-1990].

	Testing Task Iteration
	 A task that is re-performed during maintenance after having been originally performed during development.

	Test Item
	 A software or system item that is an object of testing.

	Test Plan
	 (A) A document describing the scope, approach, resources, and schedule of intended test activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, and any risks requiring contingency planning. (B) A document that describes the technical and management approach to be followed for testing a system or component. Typical contents identify the items to be tested, tasks to be performed, responsibilities, schedules, and required resources for the testing activity. (adopted from IEEE Std 610.12-1990 [B2]) The document may be a Master Test Plan or a Level Test Plan.

	Test Procedure
	 (A) Detailed instructions for the setup, execution, and evaluation of results for a given test case. (B) A document containing a set of associated instructions as in (A). (C) Documentation that specifies a sequence of actions for the execution of a test. (adopted from IEEE Std 982.1TM-2005 [B7])

	Testware
	 All products produced by the testing effort, e.g., documentation and data.

	UDR
	User Documentation Review

	User Documentation
	 All documentation specifically written for users of a system, such as online help text and error messages, compact disc or hard copy system description, technical support manual, user manual, all system training materials, and release notes for patches and updates.

	Validation
	 (A) The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements. (adopted from IEEE Std 610.12-1990 [B3]) (B) The process of providing evidence that the software and its associated products satisfy system requirements allocated to software at the end of each life cycle activity, solve the right problem (e.g., correctly model physical laws, implement business rules, or use the proper system assumptions), and satisfy intended use and user needs.

	Verification
	 (A) The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. (adopted from IEEE Std 610.12-1990 [B3]) (B) The process of providing objective evidence that the software and its associated products comply with requirements (e.g., for correctness, completeness, consistency, and accuracy) for all life cycle activities during each life cycle process (acquisition, supply, development, operation, and maintenance), satisfy standards, practices, and conventions during life cycle processes, and successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle activities (e.g., building the software correctly).

The terms and definitions from IEEE Std 610.12-1990, not explicitly present here, are incorporated herein by reference.

3 Software Verification Plan
The software verification approach is to use a requirements demonstration metric whereby each requirement is traced to either:

· a software test case which appears in at least one software test procedure and the software test procedure succeeds in verifying the correct implementation of the requirement, or

· a software inspection/review item whose corresponding review/analysis/demonstration shows that the requirement is fully implemented.

Part of the software verification process is to create the software test cases (and hardware test cases on the hardware side). This process then leads to the creation of the software test procedures and execution of the software test procedures verifies that the software code faithfully implements the requirements.

4 Software Validation Plan

4.1 Validation Method

The validation method consists of running a set of acceptance tests (from the Software Test Procedures/STP and Hardware Test Procedures/HTP) on the product. The generic DAQ System test procedures run on individual boards in the DAQ system (sometimes pairs of boards must be tested, for example the PPDIO96, PPAIO-16/4, PPRelay-12, and PPSSR-16 boards are far easier to test when connected to a DAQ IF board).

4.2 Automated Test Program

An automated test program requires a specific topology of the DAQ System (that is, a specific quantity and connection arrangement of DAQ System boards). From a hardware perspective, the automated test procedure only checks out the DAQ System test fixture. However, the real purpose of the automated test procedure is to test the firmware that controls the system. With reasonable confidence, one can assume that if the automated test procedures run properly on the test fixture, the firmware will likely perform correctly on other topologies.

Note, however, that this software validation plan applies only to the the DAQ System baseline hardware and software. Whenever creating branches from the baseline (e.g., for specific sites and customers), a separate V&V process must occur with a site-specific set of test procedures, verification, and validation.

4.3 Software Validation Test Facilities

As noted in the previous section, the baseline DAQ System firmware validation works best with the automated test program. While it is possible to run all the tests in the test procedure manually (that is, without using the automated test program), doing so is laborious, time-consuming, and expensive. The automated test procedure requires a Raspberry PI (with Apple’s Swift language compiler installed) and the DAQ test fixture (consisting of a Netburner MOD54415 module with the firmward installed, a DAQ IF board, four PPDIO96 boards, a PPRelay-12 board, a PPSSR-16 board, a PPAIO-16/4 boards, and three custom analog multiplexer boards. See the appropriate schematics for more details on the DAQ test fixture.

4.4 Software Validation Reporting

The software test log and report provides software validation reporting. The assumption is that if all the software test procedures run successfully, then the test engineer has validated the system against the requirements.
5 Tests to Perform
There are a wide variety of tests to perform on both the hardware and software in the DAQ System. The DAQ System Test Plan (DAQ TestPlan.doc) lists the actual tests to perform. See that document for more details.
6 Reverse Traceability Matrix
The main “backbone” of the DAQ System Verification and Validation process is the Reverse Traceability Matrix (or simply “Traceability Matrix”). This document provides links (tracing) from system requirements to requirements (hardware and software), to design descriptions (hardware and software), to test cases and inspection lists (hardware and software), to test procedures (hardware and software), and to code.
The DAQ System traceability matrix can be found in the DAQ_traceabilityMTX.xlsx (Microsoft Excel) spreadsheet file. Keeping the traceability matrix in spreadsheet form makes it easy to sort by tags in the document.
	
	PPDAQ

Plantation Productions' Data Acquisition System
	PPDAQ-STP
Page 1

